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Perturbation theory for odd perturbations 

W BYERS BROWN 
Department of Chemistry, The University, Manchester M13 9PL, UK 

MS received 20 June 1972 

Abstract. The eigenvalues of a perturbed Schrodinger equation with an odd perturbation 
are even functions of the perturbation parameter 1. It is shown how to transform the per- 
turbed equation so that the new perturbation is also explicitly an even function of 1. 

Consider the perturbed Schrodinger equation 

(Ho+AV-E)$ = 0 

where the unperturbed Hamiltonian H o  commutes with the inversion operator P,  
[H,, PI = 0. If Valso commutes with P ,  then the states I) have definite parity, and the 
perturbation series 

m 

E(A) = c I"E'"' (2) 
n = O  

contains both even and odd powers of % in general. However, if V anticommutes with 
P,  that is 

PV+ V P  = 0 (3) 
then the states $ do not have definite parity, but the eigenvalues E(A) are even functions of 
A. This situation often occurs when a system is perturbed by an electric field ;for example, 
a rotating or oscillating dipole or an atom in a nondegenerate S state. In such cases the 
usual Rayleigh-Schrodinger perturbation formulae for the wavefunction and energy 
are unnecessarily complicated, as many of the terms vanish by symmetry. It would be 
interesting and convenient if the original equation (1) could be recast into a form only 
involving A', such as 

( H 0 + A 2 V - E ) $ l =  0 (4) 
when the new perturbation operator ̂ Y- is at  most an even function of A. The situation is 
similar to that occurring in the theory of short-range interatomic forces (Byers Brown 
and Power 1970), or interpolation theory (Morris 1972), where the desired perturbation 
parameter is A(1 -A). The object of this note is to derive a compact form (4) from (1). 

Let x stand for the Cartesian configuration coordinates, so that P f ( x )  = f (  - x) ,  
and let Z be an operator which inverts the perturbation parameter A :  Zf(A) = f (  - %), 
Define an operator Q = PI = ZP. Then since Q commutes with the Hamiltonian 
H, [H, Q ]  = 0, the eigenfunctions $(x; A)  satisfy the symmetry condition 

Q $ ( x ; A )  = $ ( - x i  -A) = &(xi%) ( 5 )  
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where q = + 1 or - 1. Note that since $(x; 0) = I)(')(x), the corresponding unperturbed 
eigenfunction, q is the parity of t,h(')(x). However, $ does not have definite P parity, and 
we can write 

$(x;L) = g ( x ; i ) + u ( x ; i )  16) 

where Pg = g and Pu = - U .  Partition the original Schrodinger equation (1) into even 
and odd parts 

(H , -E)g+iVu  = 0 

(H,-E)u+iVg = 0. 

Then (8) can be solved to get 

U = iLGoVg 19) 

where Go = ( E - H 0 ) - '  is the unperturbed Green operator. Substitute (9) into ( 7 )  to 
obtain 

(10) 

This equation is satisfied by g or U ,  and can be written in the form (4), where the self- 
adjoint operator 

( H ,  + A 2  V G ,  V -  E)g = 0. 

Y = VGoV (11 )  

is an even function of i, through its dependence on the eigenvalue E.  Note that for the 
ground state, for which E ( i )  < E('), -tr is a negative operator. The function &x; 1.) is 
taken to  be g or U depending on whether q = + 1 or - 1, so that $(x; 0) = $(')(x). 

It is interesting to see how the perturbation treatment of (10) leads to results in 
agreement with the Rayleigh-Schrodinger treatment of (1). The operator Go can be 
written in terms ofthe unperturbed reduced resolvent operator R ,  for the state 10) = $('I 

of interest as 

Golr = (1 +RoAE)- 'Ro (12) 

where AE = E - E'') and C = 1 - 10) (01. The perturbed energy shift AE can be ex- 
panded in powers of i2 

(13) 

Hence, by substituting (12) and (13) into ( l l ) ,  the new perturbation operator can be 
expanded in the space of the state IO): 

(14) 

AE = ib2E(')+ i4E'4' + i.6E'6' + . . . . 

3 -  = y-C2 + j,2 y ( 4 )  + j," v ( 6 )  + . , , 

The formal solution of equation (14) for the perturbed energy shift is (Lowdin 1962) 

(16) AE = E-E'" = A2(O/V+A2VTV10) 

where Tis  the resolvent operator @(E - H)- 'L.', which can be written in terms of R ,  as 

T = {1-Ro(A2Y-AE)}- 'Ro.  (17) 
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By substituting (17) and (14) into (16), expressions for the even perturbation energies in 
(13) may be found. The first two are as follows: 

E ( 2 )  = (01VROVIO) (18) 

E'4' = (01 VR,(VR,V- E'2')R,VIO). (19) 
They agree, of course, as they must, with the result of omitting all the factors which have 
odd terms in V from the usual formulae. 

The transformation from (1) to (10) is a considerable advantage in discussing the 
branch points of the eigenvalues and eigenfunctions of H which determine the radius of 
convergence of the perturbation expansions. 
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